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INDECOMPOSABLE POLYTOPES 

BY 

MICHAEL KALLAY ~ 

ABSTRACT 

The notions of local similarity and decomposability are extended to the class of 
geometric graphs. These, in turn, are used to produce new sufficient conditions 
for indecomposability of polytopes. A simple example is given of two com- 
binatorially equivalent 3-polytopes, one decomposable, and the other not. 

1. A convex  poly tope  Q is a summand of a convex  po ly tope  P if there  exists 

a po ly tope  R such that  P = Q + R (i.e., P = {x + y : x E Q, y E R}). The  set of 

s u m m a n d s  of a po ly tope  P is convex,  and most  useful in format ion  abou t  it can 

be ob ta ined  f rom the cone  6e(p)  = {Q : AQ is a s u m m a n d  of P for  some  A > 0}. 

A po ly tope  P is indecomposable if b~(P) consists of nonnega t ive  h o m o t h e t s  of P 

only. A po ly tope  is combinatorially indecomposable if every  real izat ion of its 

combina tor ia l  type is i ndecomposab le .  

I n d e c o m p o s a b l e  2-poly topes  are just tr iangles ([9]), but no similar s imple 

geomet r i c  charac ter iza t ion  of i ndecomposab le  d - p o l y t o p e s  exists for  d > 2. An  

algebraic  charac ter iza t ion  has been  given in [4] and [5], but  it has no obvious  

geomet r i c  significance. Sufficient condit ions,  bo th  for decomposab i l i ty  and 

indecomposabi l i ty ,  have  been  given in [1], [2] (15.1), and [7]. This p a p e r  is 

mainly re la ted to t h e o r e m  (12) in [7]: 

THEOREM 1. (G. C. Shephard) .  A convex polytope P is indecornposable if it 

has an edge E, to which each vertex p of P is indecomposably connected, i.e., for 

each p E vert  P there is a chain F1, " �9 ", F, of indecomposable faces of P, such that 

E C F1, p E F,, and dim F, n F~+I > 0 for each 1 <= i < n. 

' The content of this paper is an extension of a part of a Ph.D. thesis [3], written by the author 
under the supervision of Professor M. A. Perles at the Hebrew University of Jerusalem, and 
submitted in April 1979. 
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The main results of this paper are extensions of this theorem. An important 

tool for their proof is the concept of local similarity. For a nonempty convex 

polytope in E a and a unit vector u E S d ~, let F(P, u) denote the face of P which 

is the intersection of P with a supporting hyperplane with outward normal u. 

Write P =< Q if dim F(P,u)<-dimF(Q,u)  for all u E S ~ ~ (this definition of 

" P  _-< Q "  differs slightly from the original one in [7], and follows W. Meyer's 

definition in [5]). The polytopes P and Q are locally similar (P ~ Q) if P =< Q 

and Q _-< P. These notations are used in the following ([7, theorem (4)]): 

THEOREM 2 (G. C. Shephard). If P and Q are convex polytopes, then 

Q E ~(P)  iff O <= P. 

For a nonempty face F of a d-polytope P in E J let tr(P, F)  be the (closed) 

spherical image of F, i.e., the set of all vectors u E S a ~ for which F(P, u)>= F. 
The spherical complex C(P) of P is the set of spherical images of all nonempty 

faces of P, which forms a spherical complex in the sense of [8]. The image of an 

n-face is a d - n - 1 cell in this complex, and the mapping F--~ tr(P, F)  is an 

anti-isomorphism between the face-lattice ~(P) \{O} and the complex C(P). 

2. The results of this paper require some new terminology. A geometric 
graph (GG) in E '~ is a pair G = (V, E),  where V ( = vert G)  is a finite set of 

points in E", called vertices, and E is a set of nondegenerate straight line 

segments with endpoints in V, called edges. The union A U B of two GG's,  the 

intersection A N B, an isomorphism between A and B, and the notion of a 

sub-GG of A are defined in a natural way, exactly as in the theory of abstract 

graphs. The GG's  of a single point ({x}, O), a line segment ({x, y}, {[x, y]}) and a 

(possibly degenerate) triangle ({x, y, z }, {[x, y ], [x, z ], [y, z ]}) are denoted in short 

by (x), (x ,y)  and (x ,y ,z ) ,  respectively. Two GG's  A , B  are (positively) 

homothetic if there exists an isomorphism ~o : A - - * B  such that ~0(p)= x + Ap 

for all p E vert A, with some fixed x E E a and A > 0. Such a mapping is called a 

homothety. 

An isomorphism ~0 : A ~ B is a local similarity if for every edge [p, q] of A, 

the restriction of ~0 to the sub-GG (p, q) is a homothety (in other words, if the 

vector q~(p)-  ~0(q) is a positive multiple of p - q for every edge [p, q] of A ). A 

and B are locally similar (A ~ B) if there is a local similarity between them. 

A G G  is indeeomposable if every local similarity between A and any other 

G G  is a homothety.  It follows from the definitions that a local similarity between 

indecomposable GG's  is determined by its action on two points. Note that an 

indecomposable G G  is necessarily connected. 
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The edge graph ( = 1 skeleton) of a convex polytope P forms a GG, denoted 

by G(P). 
The following Lemma 3 and Theorem 4 provide the connection between all 

these concepts. 

LEMMA 3. Let P be a d-polytope, K a GG, and O = convvert K. If G(P) 
K, then C(Q) = C(P), and G(Q)= K. 

PROOF. Let r  P---~vert K be the local similarity mapping between 

G(P) and K. If p E vert P and u E S 'H, then u E relint o(P, p) if[ (p, u> > (q, u) 

for all q Ever t  P\{p}. In this case p can be connected to q by an edge path S 

along which the function (x, u> is decreasing ([3, p. 213]). The image q~(S) of S 

under q~ is an edge path in K that connects ~p(p) to r and the function {x, u) 

decreases along ,#(S), because q~ is a local similarity. Therefore (q~(p),u>> 

(q~(q),u) for all q EvertP\{p}. Since ~(vertP)_DvertO,  it follows that 

(q~(p),u)>(x,u> for all x E O\{~(p)}, and therefore ~p(p)Evert O and u U 

relint o-(O, ~p(p)). 

If uErelint~r(P,p) then (p,u)<=(q,u) for some q Ever tP .  Following a 

similar argument we obtain (~ (p), u)=< (~ (q), u), and therefore 

u E  relint o-(O, ~p(p)). Thus vert O = r P) and o-(P, p ) =  o-(O, q~(p)) for all 

p E vert P. 

So far we have seen that the spherical complexes C(P) and C(O) have exactly 

the same (d - 1)-cells. Since every cell of C(P) and C(Q) is an intersection of 

(d - 1)-cells, we conclude that C(P) = C(Q). From C(P) = C(Q) it follows that 

G ( P ) - G ( Q ) ,  and therefore G ( Q ) - K .  But G(Q) and K have the same 
vertices, hence G(Q)= K. 

THEOREM 4. Let P and Q be two d-polytopes in Ea. The following conditions 
are equivalent : 

(a) P ~ Q, 

(b) P ~ 9~ and O E 5r 

(c) c(e)= c(o), 
(d) G(P)~ G(O), 
(e) Q E relint 5e(p). 

PROOF. The equivalence (a) <=> (b) is an immediate consequence of Theorem 

2 and the definition of local similarity. 

For a unit vector u E S d-' denote by C(P, u) (C(Q, u)) the unique cell of 

C(P) (C(Q)) which contains u in its relative interior. The implication (c) ~ (a) 

follows readily from the equality dim F(P, u) + dim C(P, u) = d - 1. To establish 
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the equivalence (a) r (c) (which was, in fact, proved in [4] as Corollary 2.7), 

assume that C(P)~ C(Q). Since every cell of C(P) and C(Q) is an intersection 

of ( d -  1)-cells, the inequality C(P)~ C(Q) implies that for some u E S ~-1, 

C(P, u) ~ C(Q, u) and dim C(P, u) = dim C(Q, u) = d - 1. Suppose, say, that 

C(Q, u)~ C(P, u), hence bd C(P, u) intersects int C(Q, u). Choose a point 

w E bd C(P, u) s int C(Q, u). Then dim C(P, w) < d - 1 = dim C(Q, w), hence 

dim F(P, w)>dimF(Q, w), contrary to (a). Thus we have (a)r (c). 

The proof of the implication (c) ~ (d) is straightforward, and we omit it. The 

inverse implication (d) ~ (c) follows immediately from Lemma 3. For the proof 

of (b) ::> (e) we shall first show that P E relint f i(P).  For any A E f i (P)  there is a 

positive A such that AA is a summand of P, i.e., there exists a polytope B such 

that AA + B = P. But this implies 

A A +  1 P = A +--'--i ~ (B + AP), where ~ +  1 _ A + I  A + I  1, 1>  > 0 ,  

and so B + ,~P E fi(P).  Thus we see that for every A E fi(P),  P is an interior 

point of a line segment in f i (P)  with endpoint A, hence P E relint fi(P).  

Now O E f i (P)  implies f i (O)  _C fi(P),  because/~R is a summand of O and 

•O is a summand of P, then A/~R is a summand of P. Hence (b) implies 

f i (P)  = f i (O),  and O E relint f i (O)  = relint fi(P).  

Finally we show that (e) :~ (b). Let Q be a polytope in relint f i(P).  If Q = P 

then (b) is obviously true. Otherwise, the line segment [P, Q] can be slightly 

extended in f i (P)  to a line segment [P, R ], which contains Q as an interior point. 

Thus AP is a summand of Q for some )t > 0, hence P E f i (Q).  

COROLLARY 5. A polytope P is decomposable if and only if G(P) is 
decomposable. 

PROOF. (1) If P is decomposable then relint f i (P)  contains a polytope Q 

which is not homothetic to P. Clearly G(P) is not homothetic to G(Q), but by 

(e) ~ (d) we have G(P)~ G(Q),  hence G(P) is decomposable. 

(2) If G(P) is decomposable, then there exists a GG K such that K ~ G(P) 
but K is not homothetic to G(P). By Lemma 3, Q = c o n v v e r t K  satisfies 

G(Q)= K -  G(P). 
By (d) ~ (b) we have 0 f i (P) ,  but 0 is not a homothet of P, because G(P) 

and G(Q) are not homothetic. Thus P is decomposable. 

3. Theorem 1 may now be regarded as a consequence of the last corollary, 
and the following two simple lemmas: 
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LEMMA 6. A G G  is indecomposable iff it has an indecomposable sub-GG L 

such that vert L = vert K. 

LEMMA 7. I f  tWO indecomposable G G ' s  A and B have (at least) a common 

edge, then A U B is indecomposable. 

Lemma 6 follows immediately from the definitions, and Lemma 7 is a special 

case of Theorem 8 below. 

Our  aim in this section is to establish four theorems of the same type as 

Lemma 7. These theorems, together with Lemma 6, may serve to establish 

indecomposabili ty of polytopes, and to obtain results similar to Theorem 1. 

THEOREM 8. I f  tWO indecomposable G G ' s  A and B have (at least) two 

vertices in common, then A U B is indecomposable. 

PROOF. Let ~ : A tO B --~ C be a local similarity. The indecomposabili ty of A 

and B implies that the restrictions ~0 J a and ~0 I B are homotheties.  Since these 

two homothet ies  act identically on the vertices of A and B, they are restrictions 

to vert A, resp. vert B, of one and the same homothety  of E ". Hence ~o is a 

homothety,  and this proves that A U B is indecomposable.  

THEOREM 9. I f  A , ,  A2, A3 are three indecomposable GG's ,  and a,2, a23, a~3 

are three non-collinear distinct vertices, such that a~i E A~ f3 Aj for 1 < i < j <= 3, 

then B = A1 U A2 U A3 is indecomposable. 

PROOF. Let ~ : B  ~ C be a local similarity. The indecomposabili ty of A, 

implies that the restriction ~ J a, is a homothety  for 1 _-< i _-< 3. Since every two of 

the three points al2, a23, a13 are contained in some A,, the restriction of ~ to the 

tria~agle T = (az2, a23, a~3) is a local similarity, and therefore a homothety ,  since T 

is indecomposable.  Since T has two common vertices with each A~, it follows 

that the four maps q~ j r, ~0 1 A., ~ I A~, ~ I A3 are restrictions of one and the same 

homothety.  This proves the indecomposabili ty of B. 

THEOREM 10. Let C be the union of two indecomposable G G ' s  A and B and 

two disjoint edges (a, ,b,),  i = 1 , 2 ,  each connecting A to B (i.e., a, E v e r t A ,  

b~ E vert B, and the four points al, a2, bl, b2 are distinct). I f  the two lines aff(a~, bl) 

and aft (a2, b2) are skew then C is indecomposable. 

PROOF. Let ~ : C--~ D be a local similarity. The indecomposabili ty of A and 

B implies that q~ I A and ~0 1 a are homotheties,  and so are, of course, also the 

restrictions ~0 L to,,~) and tp j~a~.~). 

It remains to show that all these homothet ies  are restrictions of one and the 
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same homothety of E d. We shall assume, without loss of generality, that the 

homothety r A is the identity, and then prove the same about the three other 
homotheties. 

Now r = a, and ~ I ~,.b,~ is a homothety, hence r E aft(a,  b,) for i = 1, 2. 

Since ~ I B is a homothety, the line segments [b~, b2] and r ([b~, b2]) are parallel or 

collinear. It follows that r  b,, otherwise the two lines aft(a,, b,) would be 

coplanar or coincide, which contradicts our assumption. Therefore ~ 18 is the 

identity. 

THEOREM 11. Let C be the union of two indecomposable GG's  A and B, and 

three vertex disjoint edges (a,, b,), i = 1, 2, 3, each connecting A to B (i.e., a, is a 

vertex of A, b~ a vertex of B, and the six points ctz, a2, a3, b~, b2, b3 are all distinct). 

I f  the three projective lines lin(a,, b,) are not concurrent, then C is indecomposable. 

PROOF. If any two edges (a,, b~) and (aj, bj) lie on skew lines, then C is 

indecomposable according to Theorem 10. 

If every two of the three edges (a~, b~) are coplanar, then they must all lie in 

one plane, otherwise the three lines lin(a,, b,) would be concurrent, contradic- 

tory to our assumption. Assume, therefore, that the lines are coplanar. Let 

: C ~ D be a local similarity. The indecomposability of A and B implies that 

j a and ~ I ~ are homotheties, and so are, of course, also the restrictions ~ i (o,.b,~ 

for i = 1, 2, 3. It remains to show that all these homotheties are restrictions of 
one and the same homothety of E ~. 

We shall assume, without loss of generality, that the homothety ~ a is the 

identity, and then prove the same about the other homotheties. 

The three-point GG's  (b~, b2, b3) and (r ~(b2), ~(b3)) are homothetic by 

~ojB ; hence the inequality ~(b,) # b, for all 1 =< i _-<3 would imply that the three 

lines lin(b,, ~(b,)) all contain the fixed point of the homothety ~ 18, which may be 

at infinity in case ~ t B is a translation. (If (bl, b2, b3) is a proper triangle then the 

concurrence of the three lines also follows from Desargue's Theorem [6, p. 6].) 

But lin(b,, 9(b , ) )=  lin(a,  b,), and this would contradict our assumption. 

If ~(bk) = bk for one k only, then for any / ' #  k, the two distinct points b, and 

(b,) are common to the lines lin(bk, hi) and lin(aj, b,), which therefore coincide. 

Hence the point bk lies on all three lines lin(a,, b,), which again contradicts our 

hypothesis. Hence ~(b,) = b, for at least two values of i, and ~ IB is the identity, 

since B is indecomposable. This, in turn, implies that ~ is the identity, which 
completes the proof. 

4. Theorem 1 can now be extended in two directions: 
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THEOREM la. A polytope P is indecomposable if every two vertices of P belong 
to some indecomposable sub-GG of G(P). 

REMARK. Note that unlike Theorem 1, this version does not require a fixed 

"anchor" edge E to which every vertex is indecomposably connected. 

PROOF. Let [p, q] be an edge of P, and let G be a maximal indecomposable 

sub-GG of G(P) which includes the GG (p, q). Let x be any vertex of P, x~  p, q. 

By the assumption of the theorem x is a vertex of two indecomposable sub-GG's 

K and L of G(P) with p Evert  K and q Evert  L. By Theorem 9, G U K U L is 

indecomposable, hence the maximality of G implies x E G. This proves that 

vert G = vert P, and P is indecomposable, by Lemma 6 and Corollary 5. 

THEOREM lb. A d-polytope P (d >= 3) is indecomposabte if G(P) has an 
indecomposable sub-GG K such that all the components of G(P)\ K are isolated 
vertices or isolated edges. 

PROOF. Let G be a maximal indecomposable sub-GG of G(P) which 

includes K, and let x be any vertex of P. Suppose x E vert G. The component C 

of G(P)\G which contains x is either the GG (x), or the GG (x, y) for some y, 

where [x, y] is an edge of P. If C = (x), then P has at least two different edges 

[x,w] and [x,z], with w and z in vert G. By Theorem 9, G U(x ,w)U(x , z ) i s  
indecomposable, which contradicts the maximality of G. If C = (x, y) then each 

one of the vertices x and y is connected to G by at least two edges of P. From 

among these edges we can choose a pair of edges, say [x, z] and [y, w], which lie 

on skew lines. By Theorem 10, G U (x, z) U (y, w) U (x, y) is indecomposable, 

which again contradicts the maximality of G. It follows that G -- G(P), and P is 

indecomposable, as in the proof of Theorem la. 

5. The following is a simple example of two combinatorially equivalent 

3-polytopes, one decomposable and the other not. Another example has 

previously been given in [4], but this one is simpler. 

The decomposable polytope P (see Fig. 1) is obtained by attaching square 

pyramids to the top and bottom facets of a cube. To obtain the indecomposable 

version Q, tilt one of the "walls" of the cube slightly about its bottom edge 

before attaching the (rectangular) pyramid on the top facet. 

P is decomposable, since it is the sum of a vertical line segment and an 

octahedron. Q is indecomposable by Theorem 10. Let A and B be the 

indecomposable GG's of the top and bottom pyramids, respectively, and let 

(a,, b~), i = 1, 2, be two opposite side edges of the (deformed) cube, which do not 
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(31 ~ 02 

p Q 
Fig. ]. 

lie in the same "wall". The union of A, B and the two edges (a,, b~) is a GG 

which covers vert Q. The two edges (a,b~) lie on skew lines, hence Q is 

indecomposable. 

The indecomposability of Q can be easily proved directly without using 

Theorem 10. However, it is interesting to see that the skewness of the lines 

aft(a,, b,) is essential for the indecomposability of Q. 

6. In the next example Theorem 11 serves to prove the combinatorial 

decomposability of a polytope P. In this case there seems to be no obvious 

alternative proof. 

To construct P, start with a regular hexagon h with vertices al, a:, a3, a4, as, a6 

(in this cyclic order). Let K be a bipyramid based on H with apices b, c. Truncate 

K by two planes Hb, Hc, parallel to aft H, that separate h from b and c, 

respectively. The resulting truncated bipyramid T has 18 vertices a~, b,, c, where 

{b,} = Hb f3 [a~, b] and {c~} = ~ fq [a ,  c] (1 = i =< 6), and two hexagonal faces 
I 2 [b~, ' ' - ,  b6], [c~, ' '  ", c6]. Next truncate T at b, down to a~, 2b, + ~b,+l, ~b, + ~b,_~ for 

i = 1, 3, 5 and truncate T in a similar way at c~ for i = 2, 4, 6. (Here, of course, 

b0 = b6 and c7 = cl.) The resulting polytope Q has two nonagonal bases B, C, 

parallel to the hexagonal equator H. Finally, to obtain the desired polytope P, 

attach to Q two sufficiently flat nonagonal pyramids at the bases B and C. 

Figures 2 and 3 give a top view and a side view of P. The top pyramid, together 

with the three triangles connecting it to the equator H, is clearly an indecompos- 

0 2 O3 

(16 ~ 
Fig. 2. 

0 4 

~ b4 

Fig. 3. 

(14 
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able GG, call it A, and so is the GG B consisting of the bottom pyramid with the 

triangles connecting it to the equator H. A is connected to B by the six edges of 

H. No three of these edges lie on concurrent lines, and A and B together cover 
vert 1>. G(P) is therefore indecomposable by Theorem 11 (and Lemma 6), and 
thus P is indecomposable. 

Let R be any polytope combinatorially equivalent to P. If every two edges of 
the equator of P are coplanar then every three adjacent edges of the equator are 
coplanar, and the whole equator of R is a planar hexagon. In this case Q is 
indecomposable by the same argument as above. If the equator of R has two 
skew edges then G(R) is indecomposable by Theorem 10 (and Lemma 6). 
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